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THE PULSATION METHOD FOR GENERATING

CAVITATION DAMAGE

Milton S. Plesset

California Institute of Technology
Pasadena, California

Abstract

Results are presented for the cavitation damage of materials by a

laboratory procedure in which the cavitation is applied in an intermittent,

or pulsed, manner. It is found that the rate of damage in materials

sensitive to corrosion is much greater for pulsed cavitation than for steady

cavitation when the cavitating liquid is salt water. The damage rate is

also increased by the pulsed cavitation for these materials when the cavi-

tating liquid is distilled water but by a smaller amount than in the salt

solution. For corrosion insensitive materials there is no significant

difference between the cavitation damage rate when it is applied in a steady

or in a pulsed manner.
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1. Introduction

It is recognized that the accelerated nature of the damage pro-

duced by cavitation in laboratory experiments can affect the validity of

predictions of the behavior of materials in applications in which the cavi-

tation damage is extended over a long period of time. Experiments have

shown[ that large mechanical stresses of short duration are produced

in a solid when cavitation bubbles collapse near its surface. The deforma-

tions in the solid structure produced by these stresses have also been ob-

[ 2]
served ] These observations support the conclusion that fatigue is the

physical phenomenon involved in cavitation damage. As a fatigue process,

chemical or corrosive effects in the cavitation environment should be

expected to play an important role in the cavitation damage, for it is

known that fatigue failure occurs more rapidly when the cold working takes

place in a chemically active environment. The greatly compressed scale

of the exposure time in laboratory experiments on cavitation erosion may

be expected to exaggerate the physical aspects of the process relative to

the chemical aspects. This acceleration in the rate of the process is pre-

sumably the reason that the hardness of the material appears in laboratory

experiments as a most important feature in determining its resistance to

cavitation damage with its chemical properties appearing to be much less

significant.

M.S. Plesset, "On Physical Effects in Cavitation, " "Deformation and

Flow of Solids," R. Grammel, editor, Springer, Berlin, Germany

1956, pp. 218-235.

[2] M. S. Plesset and A. T. Ellis, "On the Mechanism of Cavitation

Damage," Trans. ASME, vol. 77, 1955, pp. 1055-1064.
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2. Pulsing Technique for Studying Cavitation Erosion

A possible way to reduce the accelerated nature of the laboratory

measurements would be to reduce the damage rate and extend the exposure

time. This straightforward approach can present some practical problems

which may be explained by considering the specific example of the magneto-

strictive oscillator method for producing cavitation damage. This method

is widely used, and the present experiments were performed with this

type of cavitation generator. The magnetostrictive oscillator gives a

periodic motion to the specimen which is immersed in the test liquid. At

low oscillation amplitudes there is no cavitation, and in the apparatus

used in the present experiments none appeared until the threshold ampli-
-4

tude of approximately 10 in. was attained. As the amplitude increases,

the cavitation damage rate, as measured by specimen weight-loss, is

found to be a linear function as shown in Fig. 1. The threshold amplitude

is independent of the specimen used; the slope of the weight loss line, how-

ever, depends on the specimen material. In our experiments it was con-

venient to operate at an oscillation anzplitude of 0. 0010 in. At this level

the cavitation damage rates by the usual laboratory standards were mod-

erate yet still accurately controlled and reproducible. It is evident that

a reduction in damage rate by a factor of 10 is not possible, and any at-

tempt to reduce the amplitude by a somewhat smaller factor would intro-

duce difficulties for accurate measurement and reproducibility.

A technique has been developed"[ 3, 4] to avoid these difficulties

[3]M.S. Plesset, "Pulsing Technique for Studying Cavitation Erosion of
Metals," Corrosion, vol. 18, No. 5, pp. 181 - 188, May 1962.

[4]M.S. Plesset, "An Experimental Method for Evaluation of Resistance
to Cavitation Erosion," Proc. Int'l. Assn. for Hydraulic Res., Inst. for
High Speed Mechanics, Tohoku Univ. ,Sendai, Japan, Sept. 1962
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which we term pulsed cavitation. In this procedure the specimen oscilla-

tion amplitude is raised to its full amplitude of say 0. 0010 in. for the

cavitating interval, the amplitude is then cut off to zero for the non-cavita-

ting interval, and the pattern is repeated. A schematic representation of

the pulsed amplitude pattern is given in Fig. 2. The inertia and damping

of the system give a characteristic rise and decay time in the oscillation

amplitude envelope. These characteristic times have been measured for

our apparatus. If A is the steady oscillation amplitude, the amplitude

rise can be represented by

A [ 1 - exp (-t/T) ]

-3
with T = 2.04 x 10 sec., and the amplitude fall byr

A exp (-t/ Td)

-3
with Td = 1.10 x 10 sec. One can fix two features of the pulsed cavita-

tion cycle independently. First, a choice may be made of the repetition

period of the cycle as, for example, 13/60 sec. = 216.67 millisec. ; and

second, a choice may be made of the fraction of this total period during

which cavitation damage occurs. If, for example, the effective interval

during which cavitation damage occurs is to be 1/20 of the total period,

then the corresponding duration of the pulse must be determined by in-

tegration of the oscillation amplitude envelope over the cavitation rate

as a function of amplitude (cf. 'Fig. 1). For cavitation 1/20 of the exposure

time with a period of 216.67 millisec. , one finds that the required duration

of the pulse is, as shown in Fig. 2, 12.30 millisec. The effective dura-

tion of the pulse pattern can be established independently of the specimen
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material. This result is valid since the cavitation threshold amplitude is

independent of specimen material and since the cavitation damage rate is

a linear function of specimen amplitude. The effective cavitation pulse

length depends only on the ratio of the operating amplitude A to the

threshold amplitude, and does not depend on the slope of the cavitation

damage rate as a function of amplitude. This behavior is most useful not

only because the effective cavitation pulse length is then independent of

the specimen material but also because relative amplitudes are more ac-

curately known than absolute amplitudes.

The experimental procedure and the results shown in Fig. 3 - 8

have been described in Refs. 3 and 4. A brief recapitulation of some of

the results given in these references will be presented in this section

since thereby the pulsed cavitation procedure is more readily understood.

In the next section new results will be described which give a more com-

prehensive view of the comparison between steady and pulsed cavitation.

In the previous experiments two types of materials were investigated. The

one type consisted of materials which are corrosion sensitive, such as

mild steel and 4340 steel. The second type consisted of corrosion in-

sensitive materials such as 17-7 PH stainless steel, Inconel X, and

Inconel 718. A comparison of steady cavitation and pulsed cavitation

weight losses is shown in Fig. 3 for mild steel. The steady cavitation

results are shown by the solid lines and the pulsed cavitation by the dashed

lines. The cavitation exposure in both situations is effectively the same

except that for the pulsed application a cavitation damage time of 1 hour,

for example, means an experimental exposure time of 20 hours. Similar

results for soft 4340 steel are shown in Fig. 4. In both these materials
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there is a large increase in the rate of weight loss in going from steady to

pulsed cavitation in the salt solution, there is also a similar increase al-

though of smaller magnitude in distilled water, and there is a decrease in

the rate of cavitation weight loss in going from steady to pulsed cavitation

in water buffered to pH8. Figure 5 shows the results with 17-7 PH stain-

less steel at a Brinell hardness number of 175. The rates of cavitation

weight loss vary very little in going from steady to pulsed cavitation with

this corrosion resistant material. The same sort of behavior is found

with these materials in the hardened form as is clearly exhibited in

Figs. 6 and 7 which compare 4340 steel directly with the corrosion re-

sistant materials Inconel X and 17-7 PH stainless steel.

The results just presented give comparisons of the effects of cavi-

tation damage when the cavitation is applied in an intermittent, or pulsed

manner and when it is applied in a steady manner. While the calculation

of the effective duration of the cavitating interval is a straightforward

matter, it might seem desirable to have an independent method of deter-

mining the accuracy of the ratio of the cavitating interval to the noncavi-

tating interval. Since the difference between the damage in the pulsed

cavitation and the damage in the steady cavitation is presumed to be

related to the chemical activity of the environment, this difference should

disappear when the cavitation takes place in an inert environment. Under

this condition, only the physical effects of the cavitation can play a role

and the results should be the same for steady and for pulsed cavitation.

Such an experiment was performed by placing the cavitation system in a

gas tight enclosure. The cavitating liquid was chosen to be toluene which

is quite inert chemically. The air was removed from the system, the
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toluene was deaerated and it was then saturated with helium. The system

was then filled with helium to one atmosphere pressure. The specimen

material used for the cavitation damage measurements was mild steel

which shows a great difference between pulsed and steady cavitation

(cf. Fig. 3). The results of the steady and pulsed cavitation in toluene

with the helium atmosphere are shown in Fig. 8, and it is evident that

the pulsed cavitation weight losses are essentially the same as the steady

cavitation weight losses. The final weight loss in the pulsed experiment

was about 4 percent less than the corresponding steady cavitation weight

loss; this difference is within the error of the experimental procedure.

3. Effect of Variation of Pulse Parameters

The question may naturally be raised regarding the effect either of

changing the repetition rate of the pulse pattern for a given pulse duration,

or of changing the pulse duration for a given repetition rate.

A series of experiments were performed in which the pulse dura-

tion was kept constant at the value of 12. 3 millisec, which corresponds to

an effective pulse duration for cavitation damage of 10.83 millisec; the

repetition rate was then varied from continuous cavitation to C 1/40.

Cavitation damage data was obtained for 4340 steel and 17-7 PH stainless

steel in distilled water over this range. As is evident from Figs. 3 - 8,

the weight loss attains a linear variation with exposure time, and it is the

rates of weight loss in this linear range which are shown in Fig. 9 for the

various repetition periods. The weight loss per unit cavitating time shows

almost no variation from continuous cavitation to C 1/40 for the stainless

steel. The 4340 steel, on the other hand, shows a small rise in rate of
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weight loss from continuous cavitation to C 1/10, and thereafter shows a

more rapid rise. As is always the case, by the rate of weight loss is

meant the weight loss per unit of exposure time to the cavitation. It fol-

lows that a cavitating interval of 1 hour for C 1/40 requires an experi-

mental running time of 40 hours during most of which time the specimen

is stationary. For these very long experimental times, it was considered

desirable to correct the measured weight losses for the weight loss ex-

perienced by a specimen which is at rest in the liquid. The dashed curve

in Fig. 9 shows the weight losses corrected in this way. This correction

for the 4340 steel is relatively small, and is not observable for the stain-

less steel.

A similar series of experiments were performed in a 3 percent

solution of salt in distilled water, and the results are shown in Fig. 10.

The solid curves give the weight loss per unit cavitating time. The

corrosion resistant materials, 17-7 PH stainless steel and Inconel 718,

show essentially no effect of change in repetition rate. The corrosion

sensitive material 4340 steel shows the effect of pulsing the cavitation

which is quite marked even for the shorter repetition rates. The dashed

curve gives the correction in the rate of weight loss for a static specimen

in such a salt solution; there is no observable correction for the 17-7 PH

stainless steel and the Inconel 718.

The duration of the cavitation pulse in all the experiments so far

described was 12. 3 millisec. with an effective cavitation damage duration

of 10.83 millisec. Experiments were carried out for a pulse duration of

one-half this value as well as for a pulse duration of double this value.

The results are shown in Fig. 11 for a 3 percent salt solution in water.
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Essentially no variations were observed with a corrosion resistant mate-

rial like 17-7 PH stainless steel, and the results are presented only for

4340 steel. So far as these data are concerned, no systematic effects of

change in pulse duration over the range thus far covered are apparent.

4. Discussion of the Results

The effect of a pulsed application of cavitation is quite clear. For

a corrosion sensitive material such as mild steel or 4340 steel, the dam-

age as determined by rate of weight loss is markedly increased while for

a corrosion insensitive material such as 17-7 PH stainless steel there is

very little change. The rise in damage for a corrosion sensitive material

occurs even when the cavitating liquid is distilled water although the change

is less than for salt solution. There is also some indication that the dam-

age rate is decreased with pulsed cavitation applied in distilled water

buffered to pH 8.

The rise in damage rate in pulsed cavitation with a material sen-

sitive to a corrosive environment may be understood by supposing that a

stationary specimen of such a material undergoes some chemical attack

in the noncavitating interval. Even though the loss of material under such

conditions is quite small, the rate of material loss can be increased dur-

ing the initial portion of the cavitating interval. Under steady cavitation

conditions the surface material is being removed so rapidly that there is

not~sufficient time for appreciable corrosive weakening of the surface.

Some measurements have been made to determine the magnitude

of noncavitating erosion rates. The specimens used were made of 4340

steel and they were exposed to salt solution. The rate of weight loss was.
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measured by oscillating the specimens at a steady amplitude below the

threshold amplitude for cavitation. The data are shown in Fig. 12. The

point at zero amplitude gives the rate of material loss in a specimen at

rest immersed in salt solution to the average depth used in all the oscilla-

tion experiments. It is of interest that the rate of weight loss is a linear

function of amplitude. Since the oscillations are harmonic, this result

means that the erosion rate is a linear function also of velocity or of

acceleration. As is shown in the figure, the rate of weight loss changes

to a much steeper linear function beyond the cavitation threshold. The

voltage scale used in Fig. 12 is directly proportional to the oscillation

amplitude (1 volt = 6. 3 x 1 0-4 in.) and is used since the amplitude is con-

veniently measured by the alternating voltage generated in a pickup coil

around the oscillating driver for the specimen. One might suppose that

the noncavitating, low amplitude, rate of weight loss could be extrapolated

to high amplitudes. If this linear extrapolation is made, one finds a non-

cavitating erosion correction which while still small is not negligible.

One may roughly predict whether a material will show a large rise in

cavitation weight loss with pulsed cavitation as compared with steady

cavitation by examining its noncavitating erosion behavior. On this basis

the pulsed effect with 4340 steel specimens should be very large in salt

solution and much less in distilled water. Figure 13 does indeed show

that the low amplitude noncavitating erosion of 4340 steel in distilled

water is small.
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